Eserleri

1. el-Faħrî fi (śınâati)’l-cebr ve’l-muķābele. Kerecî bu esere ithaf ettiği Vezir Fahrülmülk’e nisbetle el-Faħrî ismini vermiştir. Franz Woepcke kitabı, Köprülü (nr. 950) ve Süleymaniye (Lâleli, nr. 2714; Esad Efendi, nr. 3157) kütüphanelerindeki nüshaları görmeden sadece Paris nüshasını (Bibliothèque Nationale, nr. 2459) esas alarak Fransızca özetiyle birlikte yayımlamıştır (Paris 1853). Eser iki kısma ayrılır. İlk kısımda cebirsel hesap teorisiyle birinci ve ikinci dereceden belirli ve belirsiz denklemler konusu ayrıntılı biçimde işlenmiş, ikinci kısımda cebir problemleri verilmiştir. Birinci kısmı oluşturan on beş bölümden ilk dokuzu cebir işlemleri teorisine, geri kalanları denklem çözümlerine ayrılmıştır; çözümlerin dönemin cebir anlayışına uygun olarak geometrik kanıtlarla da ispat edildiği görülür. Kerecî, zamanında cebre dair en mükemmel inceleme olan bu kitabında ilk defa cebirsel üsleri sistemli biçimde incelemiş, aritmetik işlemlerini cebir terim ve ifadelerine uygulamış ve yine ilk defa polinomlara ulaşmıştır. Onun ele aldığı problemlerden birinde, küplerinin toplamı rasyonel bir sayının karesini veren iki rasyonel sayının bulunması istenmektedir. Sembolik gösterimle problem x³ + y³ = z² belirsiz denklemine dönüşür. Belirsiz denklemler konusunda Diophantus’un etkisinde kaldığı bilinen Kerecî, söz konusu denklemi x = x, y = mx, z = nx (m ve n rasyonel sayılar) şeklinde ele alır ve m = 2 ve n = 3 için x = 1, y = 2, z = 3 çözümlerini bulur; böylece tabii sayıların kare ve küplerinin toplamını hesaplar.

2. el-Kâfî fi’l-ĥisâb. Kerecî’nin yine Vezir Fahrülmülk’e ithaf ettiği eser hisâbü’l-hevâîye (zihin hesabı) dairdir. Altmış dokuz babdan oluşan kitapta hesap işlemleri rakamlarla ifade edilmemesine rağmen son derece kolay ve anlaşılır bir üslûpta açıklanmış, ayrıca zihnî aritmetik yanında özet olarak cebire de yer verilmiştir. Meselâ birinci ve ikinci dereceden denklem çeşitleriyle ilgili örnekler: ax = b denklem tipi için 3 x + g x = 10, y x + ‚ x = 8 ve 2 x + ~ x = 5 a; ax² + bx = c denklem tipi için x² + 10 x = 39, 3 g x² + 10 x = 60 ve x x² + 3 x = 16; bu tip denklemlerin genel çözümü için x² + 7 × 9’dan x = ›9 + ˆ - L formülü ve L x² + b x = c, a < d için x² + y x = Y ve buradan x = ¨Y+… - † formülü; ax² + c = bx denklem tipi için x² + 21 = 10 x denklemi ve x = 5 + ©5²-21 = 5 + 2 = 7 ve 3 çözümleri; ax² = bx + c denklem tipi için x² = 3 x + 4 denklemi ve x = 1a + ©4 + (†)² = 1a + 2 a = 4 çözümü gibi. Eser ilk defa, Adolf Hochheim tarafından Gotha (nr. 1774) nüshası esas alınarak Almanca’ya çevrilip Arapça metniyle birlikte üç cilt halinde yayımlanmıştır (Kāfī fi’l-ĥisāb des Abū Bekr Muhammed Ben Alī Ĥusain al-Karkhī, Halle 1878-1880). Daha sonra Ahmed Selîm Saîdân kitabın cebirle ilgili kısmını İlmü’l-ĥisâbi’l-Arabî içinde neşretmiş (Amman 1971, s. 367-466), Sâmî Şelhûb de günümüze intikal eden dokuz nüshanın beşini karşılaştırarak eserin ilmî neşrini gerçekleştirmiştir (Halep 1406/1986). el-Kâfî üzerine biri Ebû Abdullah Hüseyin b. Ahmed eş-Şikāk el-Bağdâdî (TSMK, III. Ahmed, nr. 3155/2), diğeri M. Ali b. Hasan b. Ahmed eş-Şehrezûrî (Süleymaniye Ktp., Yenicami, nr. 801) tarafından yazılan iki de şerh bulunmaktadır.

3. el-Bedî fî amâli’l-ĥisâb. Hacimce küçüklüğüne rağmen cebir ilminin V. (XI.) yüzyıl başlarında ulaştığı düzeyi göstermesi bakımından önemli olan eseri Âdil Enbûbâ Fransızca özetiyle birlikte yayımlamıştır (Beyrut 1964).

4. İlelü ĥisâbi’l-cebr ve’l-muķābele. Dört işlemle ikinci dereceden denklemleri konu edinen eser, çözümlerde geometriye başvurmadan yalnız cebirsel yolları kullanması sebebiyle bu ilmin modern şeklini almasına önemli katkı sağlamıştır. Melek Dosay (Gökdoğan) kitabın edisyon kritiğini yapmış ve metni Türkçe’ye çevirerek neşretmiştir (Ankara 1991).

5. Kitâbü İnbâŧi’l-miyâhi’l-ħafiyye. Yer altı sularının bulunduğu arazilerin fizikî durum ve bitki örtüsü açısından tasvirini, su kaynaklarının tanıtımını, ayrıca sulardaki sertlik derecesinin sebepleriyle yer altı sularının çıkarılma tekniklerini konu alan eser Haydarâbâd’da basılmış (1359), daha sonra da metni Ali Mezâhirî tarafından Fransızca tercümesiyle birlikte yayımlanmıştır (Nice 1973). Eser kısmen İngilizce’ye de çevrilmiştir (Beyrut 1970).

6. Kitâbü’l-Eczâr. Matematikteki köklerle ilgilidir (Bursa Eski Yazma ve Basma Eserler Ktp., Haraççıoğlu, nr. 1169/3).

Kerecî’nin kaynaklarda adı geçen diğer eserleri de şunlardır: Muħtaśar fi’l-ĥisâb ve’l-misâĥa, Kitâb fî ĥisâbi’l-Hind, Kitâbü’l-İstiķrâǿ, el-Medħal ilâ Ǿilmi’n-nücûm, Risâle fi’l-ħaŧaǿeyn, Nevâdirü’l-eşkâl, Kitâbü’d-Devr ve’l-Veśâyâ, Kitâb fi’l-Ǿuķūd ve’l-ebniye (uygulamalı bilimler alanındaki çalışma, bina, köprü, kanal ve kale inşaatlarındaki yapı teknikleriyle ilgilidir).

sponsorlu bağlantılar